澳门百家乐官网-百家乐投注导航_百家乐网址_全讯网hg9388.com (中国)·官方网站

【科研進展】吳志澤團隊在圖結構數據驅動的人體動作識別研究方面取得新進展

發布者:科研處發布時間:2025-04-10瀏覽次數:18

人工智能與大數據學院吳志澤團隊在基于骨架數據的人體動作識別研究中取得重要進展,提出了一種結合圖卷積網絡(GCN)與自注意力機制(Self-Attention)的新方法。相關研究成果以“SelfGCN: Graph Convolution Network With Self-Attention for Skeleton-Based Action Recognition”為題,發表在國際頂級學術期刊《IEEE Transactions on Image Processing》上(DOI: 10.1109/TIP.2024.3433581)。吳志澤教授為論文第一作者,我校全職德籍教授湯衛思(Thomas Weise)為論文通訊作者,合肥大學人工智能與大數據學院為論文第一完成單位。


人體動作識別是計算機視覺領域的重要研究方向,在視頻分析、手勢識別、智能監控和人機交互等應用中具有廣泛價值。相比基于視頻或圖像的方法,骨架數據能夠通過人體關鍵關節的二維或三維坐標來表達人體結構,具有一定的環境適應性和計算效率。然而,如何充分利用骨架數據,準確建模不同關節之間的復雜時空關系,以提升識別精度,仍然是一個值得研究的挑戰。

 為此,研究團隊提出了SelfGCN模型,該方法基于圖卷積網絡構建人體骨架的拓撲結構,并引入自注意力機制,以自適應地調整關節節點的重要性權重,從而更精準地捕捉動作特征。這一研究工作為基于圖結構數據的人體動作識別提供了新的思路,有助于進一步理解和優化人體運動特征的建模方法。

(撰稿:吳彩麗,一審:陳朝明,二審:王磊,三審:王儲炎)

 


江门市| 百家乐博彩网太阳城娱乐城| 百家乐官网有方式赢钱吗| 百家乐视频视频| 十三张娱乐城开户| 财富百家乐官网的玩法技巧和规则| 德州扑克游戏网站| 杨筠松古法风水24| 利津县| 百家乐正网| 长沙百家乐官网的玩法技巧和规则| 百家乐投注最好方法| e世博百家乐官网娱乐场| 全讯网zq06| 百家乐概率计算过程| 澳门百家乐官网怎么赢钱| 大发娱乐城官网| 波音百家乐游戏| 百家乐官网赌场公司| TT娱乐城投注,| 百家乐珠盘路| 中国百家乐官网的玩法技巧和规则| 大发888游戏平台 34| 百家乐筹码币方形| 百家乐官网园百利宫娱乐城信誉好...| 大发888| 澳门百家乐技巧经| 粤港澳百家乐官网赌场娱乐网规则| 百家乐官网的胜算法| 太阳城绿萱园| 娱乐城百家乐可以代理吗| 百家乐官网赌博大赢家| 大发888在线娱乐下载| 大玩家百家乐官网的玩法技巧和规则 | 大丰收百家乐的玩法技巧和规则| 反赌百家乐官网的玩法技巧和规则 | 风水做生意店铺的门| 神人百家乐官网赌场| 百家乐官网赌博怎么玩| 明珠| 华球网|